

HIGH TEMPERATURE APPLICATION OF DRILLING SPECIALTIES POLYMERS FOR FILTRATION CONTROL

DRISPAC® POLYMER, DRISTEMP® POLYMER AND DRISCAL® D POLYMER

Depending on mud formulation, polymers based on cellulose chemistry such as Drispac[®] Regular Polymer, Drispac[®] Superlo[®] Polymer, Drispac[®] Plus Regular Polymer and Drispac[®] Plus Superlo[®] Polymer, are generally considered to be thermally stable to 250° F in laboratory testing for high temperature and high pressure (HTHP) Filtrate control. In the lab the addition of oxygen scavengers, to optimize the polymers thermal stability, boosts functional HTHP filtrate control to +300° F. Starches have a somewhat lower thermal stability and while some improvements in starch thermal stability has been achieved with single or double derivatives of hydroxypropyl and/or carboxymethyl starches, they still have not achieved the thermal stability of the cellulose derivatives. As the bottom hole temperature (BHT) increases above 300°F it becomes necessary to change mud formulation to utilize more thermally stable additives. Field use typically allows PAC polymers to be used with bottom hole temperature (BHT) exceeding maximum laboratory temperature stability by 25-50°F. This is because in actual field muds oxygen is scavenged from the mud by additives such as lignosulfonates and tannin based thinners such as Desco® Deflocculant, C.F. Desco® Deflocculant, C.F. Desco® II Deflocculant, and Drill-Thin[®] Thinner. Typically in field muds the accepted thermal stability of Drispac[®] Polymers for HTHP Filtrate control is 320°F BHT. Above this temperature something more is needed.

An improved synthetic polymer **(Dristemp® Polymer)** has been introduced for HTHP drilling, completion and workover fluids. The improved polymer imparts stable HTHP fluid loss control and viscosity to fluids that have exceeded the thermal stability limits of the most commonly used natural polymers such as cellulose derivatives Polyanionic cellulose (PAC), carboxymethylcellulose (CMC)) and any of the starches. Dristemp® Polymer will work in fresh water, sea water, saturated sodium chloride (NaCl) brines, potassium chloride (KCl) brines and formate brines. Dristemp® Polymer will tolerate up to 5,000 ppm free calcium contamination. Data presented in this brochure demonstrates the utility of the polymer in muds formulated with sea water, NaCl brine, KCl brine, and potassium formate brine. Depending on the system in which it is tested, the thermal stability limit of the Dristemp® Polymer is 375° F as tested in the laboratory.

Experience indicates the most economical drilling fluid program for HTHP wells is to formulate the mud with PAC in the upper section of the well and drill ahead until the BHT becomes high enough that the PAC polymer consumption begins to increase as a result of thermal degradation. At this point, switching to Dristemp[®] Polymer will give a relatively seamless transition to a mud, which is thermally stable to about 400° F in field applications. For very high temperature field applications (>400°F) we recommend using Dristemp[®] Polymer to about 375°F while beginning to replace it with Driscal[®] D Polymer at approximately 350°F.

For temperatures above 400°F **Driscal® D Polymer** will perform in a wide variety of muds to control HTHP filtrate in muds at any salinity in either NaCl or KCl systems. Driscal® D Polymer is calcium tolerant and has proven effective in drilling fluids with calcium counts reaching 100,000 ppm. For best results it is advised that Driscal® D Polymer be used at temperatures above 330°F and introduced before polymers such as Dristemp® Polymer begin to degrade in order to again insure a seamless transition. Driscal® D Polymer has delivered good fluid loss control as well as improved barite suspension after aging at temperatures up to 475°F. The highest BHT in which Driscal® D Polymer has been used is reported to be in excess of 500°F in California geothermal wells and in a steam flood project in Alberta, Canada.

In silicate muds, Drilling Specialties Company's hostile environment product, **HE® -300 Polymer**, is recommend for HTHP fluid loss control.

Oxygen Scavengers

Sodium sulfite, sodium bisulfite and ammonium sulfite are offered by various mud companies as O_2 scavengers. The use of these scavengers helps to reduce oxidation of polymers and keeps the pH from falling. Generally O_2 scavengers are used at concentration of (1.0 – 3.0ppb), for best results visit with your drilling fluids provider about the use of these materials.

The following data shows Dristemp[®] Polymer to be more efficient than a commonly used "high temperature" polymer in a variety of HTHP muds at temperatures beyond those where starches and cellulose polymers fail. (Note: lab testing generally takes twice as much as polymer to achieve the results seen in field applications.)

Table 1
17 lb/gal, 15% KCl Water Mud with Dristemp® Polymer

Materials, lb/bbl	Control mud	#1	#2
Bentonite, lb/bbl	3	3	5
50% w/v NaOH	0.25	0.2	0.25
Potassium Chloride	35	35	35
Na-lignite, lb/bbl	5	5	5
Dristemp [®] Polymer, lb/bbl		<mark>6.0</mark>	
Competitive used HTHP polymer,lb/bbl			<mark>7.5</mark>
Barite, lb/bbl	420	420	420
50% w/v NaOH	1.25	1.25	1.25
Rev dust, lb/bbl	15	15	15

Initial Resu	llts @ 95°F		
Plastic Viscosity, cp	13	105	67
Yield Point, lb/100 ft ²	1	54	15
6/3 rpm readings, lb/100 ft ²	2/2	16/12	3/2
Gels, lb/100 ft ²	3/11	6/11	3/7

Aged 16 Hours @ 350°F, cooled, mixed 10 minutes, and tested @ 100°F			
Settling?	Yes	No	Yes
Plastic Viscosity, cp	14	86	51
YP, lb/100 ft ²	0	30	6
6/3 rpm readings, lb/100 ft ²	2/2	5/3	2/1
Gels, lb/100 ft ²	3/9	3/5	1/2
HPHTWL, ml, (500 psi/300° F)	No Control	<mark>17.8</mark>	<mark>25.6</mark>

Table 2
16.8 lb/gal, Sea Water Mud with Dristemp [®] Polymer

Materials, lb/bbl	#1	#2
Bentonite, lb/bbl	3.00	3.00
Na-Lignite, lb/bbl	0.25	0.25
50% NaOH, lb/bbl	0.13	0.13
Sea Salt, lb/bbl	10	10
Na-lignite, lb/bbl	5	5
Dristemp [®] Polymer, lb/bbl	<mark>4.5</mark>	
Competitive HTHP polymer, lb/bbl		<mark>4.5</mark>
Barite, lb/bbl	420	420
NaOH	0.5	0.5
Rev dust, lb/bbl	15	15

Initial	Results @ 95°F	
Plastic Viscosity, cp	92	59
Yield Point, lb/100 ft ²	65	22
6/3 rpm readings, lb/100 ft ²	16/12	5.5/4
Gels, lb/100 ft ²	11/24	5/13

Aged 16 Hours @ 350°F, cooled, mixed 10 minutes, and tested @ 100°F

Plastic Viscosity, cp	53	34
Yield Point, lb/100 ft ²	22	0
6/3 rpm readings, lb/100 ft ²	3/2	1/1
Gels, lb/100 ft ²	3/5	2/2
WL, ml	3.4	5.9
HPHTWL, ml (500 psi/300° F)	<mark>31.0</mark>	<mark>57.8</mark>

Table 3

Materials Used	Control Mud	#1	#2
Potassium Formate 13.2 SG, ml	179	179	179
Tap water, ml	80	80	80
Attapulgite, lb/bbl	7.5	7.5	7.5
Glycol, ml	8	8	8
Flowzan [®] Biopolymer, lb/bbl	1.5	1.5	1.5
Dristemp [®] Polymer, lb/bbl		<mark>8.0</mark>	
Competitive HTHP polymer, lb/bbl			<mark>10.0</mark>
Mg-Oxide, lb/bbl	0.5	0.5	0.5
Bentonite, lb/bbl	5	5	5
Rev dust, lb/bbl	10	10	10

11.8 lb/gal K-Formate Mud with Dristemp® Polymer

Initial Results at 95°F			
Plastic Viscosity, cp	23	24	29
Yield Point, lb/100 ft ²	31	48	48
6/3 rpm readings, lb/100 ft ²	12/10	20/17	19/16
Gels, lb/100 ft ²	10/17	15/23	15/23

Rolled 4 hours at 250°F, the hot samples were aged **16 hours at 400°F**, cooled, observed, mixed 5 minutes, and tested at 95°F

Plastic Viscosity, cp	10	40	26
Yield Point, lb/100 ft ²	1	19	6
6/3 rpm readings, lb/100 ft ²	4/6	2/3	2/3
Gels, lb/100 ft ²	2/2	2/1	2/2
WL, ml	131	1.1	1.2
HPHTWL, ml (500 psi/300° F)	No Control	<mark>11.6</mark>	<mark>14.2</mark>
HPHT Cake		2/32"	2/32"

Table 4
16.7 lb/gal, 20% NaCl Water Mud with Dristemp [®] Polymer

Materials, lb/bbl	#1	#2	#3
Tap Water, ml	225	225	225
Bentonite, lb/bbl	3	3	3
50% NaOH, lb/bbl	0.13	0.13	0.13
NaCl, lb/bbl	58	58	58
Dristemp [®] Polymer, lb/bbl	3.5	<mark>4.5</mark>	
Commonly used HTHP polymer, lb/bbl			<mark>4.5</mark>
Polydrill, lb/bbl	5	5	5
Barite, lb/bbl	405	405	405
OCMA clay, lb/bbl	15	15	15
NaOH, pH	9.5	9.5	9.5

Initial Results @ 100°F								
Plastic Viscosity, cp	60	103	48					
Yield Point, lb/100 ft ²	37	43	10					
6/3 rpm readings, lb/100 ft ²	4.5/3	9/5.5	3/2					
Gels, lb/100 ft ²	4/11	7/15	3/12					
Aged 16 Hours @ 320°F, cooled, mixed 10	minutes, and	tested @ 10	0°F					
Plastic Viscosity, cp	44	70	38					
Yield Point, lb/100 ft ²	10	36	4					
6/3 rpm readings, lb/100 ft ²	2/1.5	4.5/3	1/1					
Gels, lb/100 ft ²	2/4	3/4	1/2					
WL, ml	7.8	8.0	7.7					
HPHTWL, ml (500 psi/300° F)	10.8	<mark>11.2</mark>	<mark>15.6</mark>					
HPHT Cake	3/32"	3/32"	11/32"					
After testing, mixed more polymer as show	vn, adjusted p	H to 9.0, ag	ed					
16 Hours @ 370°F, cooled, mixed 10 minut	tes, and tested	l @ 100°F						
More Polymer Mixed, lb/bbl	1.50	<mark>0.00</mark>	<mark>2.50</mark>					
Total Polymer, lb/bbl	<mark>(5.0)</mark>	<mark>(4.5)</mark>	<mark>(7.0)</mark>					
Plastic Viscosity, cp	43	39	36					
Yield Point, lb/100 ft ²	7	5	0					
6/3 rpm readings, lb/100 ft ²	1.5/1	1.5/1	1/1					
Gels, lb/100 ft ²	2/3	1/2	1/1					
WL, ml	1.0	1.2	1.3					
HPHTWL, ml (500 psi/300°F)	<mark>10.6</mark>	<mark>10.8</mark>	12.8					
HPHTWL (R)*	13.2	18.8	15.0					

HPHTWL (R)*13.218.815.0*HPHTWL(R): Retested for HPHTWL after removing settled solids from samples

6

TABLE 1FRESH WATER MUD WITH DRISCAL® D POLYMER

Mud Components	Mud Sample Numbers						
Added to Base Mud	<mark>#1</mark>	#2	<mark>#3</mark>	#4	<mark>#5</mark>	#6	
Lignite, lb/bbl			<mark>2.0</mark>	2.0	<mark>2.0</mark>	2.0	
Drispac [®] Superlo [®] Polymer					1.0	1.0	
Driscal [®] D Polymer, lb/bbl	<mark>2.0</mark>		<mark>2.0</mark>		<mark>2.0</mark>		
Competitive Polymer* lb/bbl		2.0		2.0		2.0	

		Initial Results at 90°F						
600 RPM	125	120	93	93	149	136		
300 RPM	89	84	65	65	104	94		
PV/YP	36/53	36/48	28/35	28/35	45/59	42/52		
Gels 10 sec /10 min.	13/18	16/38	7/11	13/32	17/28	26/44		
API fluid loss			<mark>5.7</mark>	6.0				

	Results after Hot Rolling 16 hrs @ 400°F							
	Test Temperatures at 120°F**							
600 RPM	75	29	72	33	52	19		
300 RPM	46	17	45	17	31	10		
PV/YP	29/17	12/5	27/18	16/1	21/10	9/1		
Gels 10 sec / 10 min.	7/9	1/2	3/5	1/2	3/3	1/1		
API fluid loss	<mark>8.8</mark>	9.4	<mark>5.6</mark>	7.2	<mark>5.9</mark>	7.5		
HTHP fluid loss (500	27.8	34.0	<mark>19.3</mark>	36.4	<mark>20.4</mark>	40.6		
psi/300°F)								
Settling***	NO	YES	NO	YES	NO NO	NO		

• * Competitive polymer is produced by major manufacture of high temperature polymer

** After hot – rolling, samples were cooled to room temperature, and then reheated to 120°F while stirring at 600 RMP. Base Mud = 340 ml tap water, 15 ppb bentonite, 0.04 NaOH, 10.0 ppb P95 clay, 5.0 ppb fine grind CaCO₃. The pH was adjusted to 8.5, prior to initial test, with NaOH.

• *** Observed after aging.

TABLE 2SEAWATER MUD WITH DRISCAL® D POLYMER

12 ppg Seawater Mud (9 ppb bentonite / 18 ppb drill solids)								
Initial Results					After Aging 16 hrs @ 350°F			
PRODUCT	PPB	PV/YP	Gels	WL	PV/YP	00	WL	HTHP
Base Mud*		8/7	6/13	53.4	7/11			NC
Driscal® D		ľ	,		,			
Polymer	3.0	31/28	9/14	4.0	25/24	4/14	5.2	30.0
12 pp	g Seawa	ater Mud	(9 ppb b	entonit	e / 18 pp	ob drill so	olids)	
	Initial	Results			After	Aging <mark>16</mark>	hrs @	400°F
PRODUCT	PPB	PV/YP	Gels	WL	PV/YP		WL	HTHP
Base Mud*		8/7	6/13	53.4	12/1	5/12		NC
Driscal® D								
Polymer	3.0	31/28	9/14	4.0	30/9	1/2	5.4	30.0
				-				
16 pp	<u> </u>	ater Mud	(11 ppb	benton				
		Results				Aging <mark>16</mark>		
PRODUCT	PPB	PV/YP		WL	PV/YP		WL	HTHP
Base Mud**		15/17	12/16	68.4	13/46	19/24		NC
Driscal® D								
Polymer	3.0	69/52	20/37	4.8	46/71	30/48	10.6	34.0
	6			•				
16 pp	<u> </u>	ater Mud	(11 ppb	benton				
		Results				Aging 16		
PRODUCT	PPB	PV/YP		WL	PV/YP	<u>.</u>	WL	HTHP
Base Mud**		15/17	12/16	68.4	13/46	19/24		NC
Driscal [®] D			a a /a =					
Polymer	3.0	69/52	20/37	4.8	54/48	16/46	5.8	30.0
16	a Com	aton M J	(7 male le	ontou-	a / 1 °	h dr:11 -	alida)	
16 pp	-	ater Mud	() ppp p	entonit				25005
DDODUCT		Results	C - 1 -	XAZX		Aging 16		
PRODUCT	PPB	PV/YP		WL	·····		WL	HTHP
Base Mud**		41/28	11/15	72.0	36/25	8/12		NC

Driscal® D Polymer	3.0	60/39	15/33	5.3	49/32	6/27	4.5	27.0

16 ppg Seawater Mud (7 ppb bentonite / 15 ppb drill solids)								
Initial Results				After Aging 16 hrs @ 400°F				
PRODUCT	PPB	PV/YP	Gels	WL	PV/YP	Gels	WL	HTHP
Base Mud**		41/28	11/15	72.0	44/32	8/18		NC
Driscal® D								
Polymer	3.0	69/52	20/37	4.8	49/21	4/8	5.0	32.0

- * Base Mud contains 290 ml tap water, 9 g bentonite, 4.5 g lignite, 1 g Desco Deflocculant, 12, g sea salt, 176 g barite, 18 g drill solids (1:1 ratio P95 clay/Rev Dust). The pH adjusted to 9.5 with NaOH.
- ** Base Muds contains 240 ml tap water, (7 11 g bentonite), 3.7g lignite, 10g sea salt, barite for density, drill solids (1:1 ratio P95 clay/Rev Dust). The pH was adjusted to 9.5 with NaOH. Base muds were not tested for fluid loss. Aging was done at static conditions.

Materials	Stirring time minutes	Sample # 1	Sample # 2	Sample #3
Tap Water, ml	20	220.0	220.0	220.0
Bentonite, g	10	3.0	3.0	3.0
NaOH (1 ml=0.5g), ml	10	2.0	2.0	2.0
Lignite, g	10	5.0	5.0	5.0
NaCl, g	10	60.0	60.0	60.0
Barite, g	20	350.0	350.0	350.0
Driscal® D Polymer, g	10	3.5	<mark>3.5</mark>	3.5
P95 (illite) clay, g	10	15.0		
Rev dust, g	10		15.0	
OCMA clay, g	10			15.0
	Initial Res	ults @ 85°F		
AV		67.0	65.0	88.5
PY		58.0	57.0	65.0
YP		18.0	16.0	47.0
Gels		5/15	5/12	14/36
API		2.6	2.8	2.5
рН		8.8	8.6	8.9
	After Aging 16	hours @ 400°		
AV		41.5	33.5	68.5
PY		36.0	27.0	42.0
YP		11.0	13.0	53.0
Gels (10 sec/10 min)		3/9	1/5	16/46
API		2.8	4.2	4.4
HTHP (300F & 500 Psi)		21.2	24.6	26.4
рН		7.2	7.2	7.4
Settling		None	Slight	None

TABLE 3DRISCAL® D POLYMER in 20% NaCl Water Mud

For more information on Drilling Specialties Company products see our web site at **www.drillingspecialties.com**

This publication is for informational purposes only. It should not be used in place of the advice of a professional engineer. The user acknowledges that all technical information contained in this bulletin is given for convenience only and is accepted and used at the user's sole risk. Before using this product, the user is advised to make its own determination and assessment of the safety and suitability of the product for the specific use in question and is further advised against relying on the information contained herein as it may relate to any specific use or application. It is the user's ultimate responsibility to ensure that the product is suited and the information is applicable to the user's specific application. Drilling Specialties Company does not make any warranties, and expressly disclaims all warranties, including warranties of merchantability or fitness for a particular purpose, regardless of whether oral or written, express or implied, or allegedly arising from any usage of trade or course of dealing in connection with the use of the information contained herein or the product itself. The user expressly assumes all risk and liability, whether based in contract, tort, or otherwise, in connection with the use of the information contained herein or the product itself.